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mechanics, it was Possible for the author to Prove the

eorresponding theorem without such gssumptidns.206 Since
the detailed discussion of this subject, as well as of the
érgodic theorem closely connected with it (ef. the refer-
ence in Note 206, where this theorem is also proved) would
g0 beyond the scope of this volume, we cannot report on
these investigations. The reader who is interested in
this problem can refer

2

have been formulated by w. Pauli (Sormnerfeld—Festschrift,

1928), and the H-~theorem is broved there with their help.
More recently, the author also succeeded in proving. the
classical-mechanical ergodiC'theorem, cf. Proc. Nat. Ac.,
Jan. and March, 1932, as well as the improved treatment of
G. D. Birkhoff, Proc. Nat. Ac., pec. 1931 and March, 1932.

206
2. Physik, 57 (1929).

to the treatments in the references.
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CHAPTER VI

THE MEASURING PROCESS

1. FORMULATION OF THE PROBLEM

In the discussions so far, we have treated the

‘relation of quantum mechanics to the various causal and -

statistical methods of describing nature. In the course
of this we found a peculiar dual nature of the quantum

mechanical procedure which could not be satisfactorily ex-

Plained. Namely, we found that on the one hand, a state
1s transformed into the state ¢! under the action of an
energy operator H in the time interval o <rt<t:

\
o0 . oxi

B-,E(DT——THQ_;_ (OS_TEt)7

so if we write ¢0 = ¢, ¢t = ¢! , then

¢! = e ®

which 1is purély causal. A mixture U is correspondingly
transformed into

2ni 2xl
- tH —TT-'tH .
U = e . Ue _

Therefore, as a consequence of the causal change of ¢

7

L



into ¢!

gr=p

state

> the states U = P[¢] go over into the states
[o1] (process 2. in V.1.). On the other hand, the

¢ -— which may measure a quantity with a pure dis-
crete spectrum, distinct eigenvalues and elgenfunctions

¢4, %,,... -- undergoes in & measurement a non-causal change
in which each of the states 01565, cCEND result, and in
fact does result with the respective probabilities

2
[(e, 0015, 1(e, )17, ... . That is, the mixture

o

T 2
Ur = Z|(¢': ¢n)] P[¢n]

n=1
obtains. More generally, the mixture U goes over into

o

U= > (Uep, *)P 1y B
n=1 n
(process 1. in V.1.). Since the states go over into mix-
“tures, the process is not causal. '

The difference between these two processes
U—TU' is a very fundamental one: aside from the
different behaviors in regard to the principle of causal-
ity, they are also different in that the former is
(thermodynamically) reversible, while the latter is not
(ef. V.3.). '

Let us now compare these circumstances with those
which actually exist in nature or in its observation.
First, it is inherently entirely correct that thé measure-
ment or the related process of the subjective perception
is a new entity relative to the physical environment and
is not reducible to the latter. Indeed, subjective per-
ception leads us into the intellectual inner life of the
individual, which is extra-observational by its very nature
(since it must be taken for granted by any conceivable
observation or experiment). (Cf. the discussion above.)
Nevertheless, it is a fundamental requirement of the
scientific viewpoint -- the so-called principle of the

1. TORMULATION OF THE PROBLEM -~ Mg

psycho-physical parallelism -- that it must be possible so

to describe the extra-physical process of the subjective
perception as if it were in reality in the physical world
-- i.e., to assign to its parts equivalent physical
processes in the objective environment, in ordinary space-
(0f course, in this correlating procedure there arises the
frequent necessity of localizing some of these processes
at points which lie within the portion of space occupled
by our own bodies. But this does not alter the fact of
their belonging to the "world about us," the objective
environment referred to above.) In a simple example, these
concepts might be applied about as follows: We wish to
measure a temperature. If we want, we can pursue this
process numerically until we have the temperature of the
ervironment of the mercury contalner of the thermometer,
and then say: this temperature 1is measured by the
thermometer. But we can carry the calculation further,
and from the properties of the mercury, which can be ex-
plained in kinetic and molecular terms, we can calculate
its heating, expansion, and the resultant length of the
mercury column, and then say: this length is seen by the
observer. Going still further, and taking the light source
into consideration, we could find out the reflection of the
light quanta on the opaque mercury column, and the path of
the remaining 1ight quanta into the eye of the observer,
thelr refraction in the eye lens, and the formation of an
image on the retina, and then we would say: this image is
registered by the retina of the observer. And were our
physiological knowledge more precise than it is today, we
could go still further, tracing the chemical reactions
which produce the impression of this image on the retina,
in the optic nerve tract and in the brain, and then in the
end say: these chemical changes of his brain cells are
perceived by the observer. - But in any case, no matter how
far we calculate -- to the mercury vessel, to the scale of
the thermometer, to the retina, or into the brain, at some
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time we must say: and this is perceived by the observer.
That is, we must always divide the world into two parts,
the one being the observed system, the other the observer.
In the former, we can follow up all physical processes (in
principle at least) arbitrarily precisely. In the lattef,
this is meaningless. The boundary between the two is
arbltrary to a very large extent. In particular we saw in
the four different possibilities in the example above,
that the observer in this sense needs not to become
identified with the body of the actual observer: 1In one
instance in the above example, we included even thé ther-
mometer in it, while in another instance, even the eyes
and optic nerve tract were not included. That this
boundary can be pushed arbitrarily deeply into the interior
of the body of the actual observer is the content of the
principle of the psycho-physical parallelism -- but this
does not change the fact that in each method ‘of descrip-
tion the boundary mﬁst be put somewhere, if—the method is
not to proceed vacuously, i.e., if a comparison with ex-
Periment is to be possible. Indeed experience only makes
statements of this typéﬁ an observer has made a

certain (subjectiyé) observation; and never any like this:
a physicalAquantity has a certain value.

Now quantum mechanics describes the events whiech
occur in %he Observed portions of/the world, so long as
they do not interact with the observing portion, with the
aild of the process 2. (V.1.), but as soon as such an inter—
action occurs, i.e., a measurement, it }equires the
application of process 1. The dual form is therefore
justified-zo7 However, the danger lies in the fact that

%TN. Bohr, Naturwiss. 17 (1929), was the first to point out
that the dual description which is necessitated by the
formalism of the quantum mechanical description of nature

is fully justified by the physical nature of things that 1t
may be connected with the principle of the psycho-physical

parallelism.

1. FORMULATION OF THE PROBLEM ho1

the principle of the psycho-physical parallelism is vio-
lated, so long as it 1is not shown that the boundary between
the observed system and the observer can be displaced
arbitrarily in the sense given above.

In order ﬁb discuss this, let us divide the
world into three parts: I, II, ITI. Let I be the system
actually observed, IT the measuring instrument, and III
the actual pbserver.208 It is to be shown that the bound-
ary can just as well be drawn between I and II + III
as between I + II and III . (In our example above, in

_ the comparison of the first and second cases, I was the

system to be observed, II the thermometer, and TIII the
light plus the observer; in the comparison of the second
and thilrd cases, I was the system to be observed plus the
thermometer, II the light plus the eye of the observer,
IIT the observer, from the retina on; in the comparison
of the third and fourth cases, 1 was everything up to the
retina of the observer, II his retina, nerve tracts and
brain, III his abstract "ego.") That is, in one case 2.
is to be applied to I , and 1. to the interaction between
I and IT + ITT ; and in the other case, 2. to I + IT,
and 1. to the interaction between I + II and IIT . (In
each case, TIII itself remains outside of the calculation.)
The proof of this assertion, that both procedures give the
same results regarding I (this and only this belongs to
the observed part of the world in both cases), is then our
problem.

But in order to be able to accomplish this
successfully, we must first investigate more closely the
process of forming the union of two physical systems (which
leads from I and II to I + II)

208The discussion which is carried out in the following, as

well as that in VI.3., contains essential elements which
the author owes to conversations with L. Szilard. Cf. also
the similar considerations of Heisenberg, in the reference
cited in Note 181.
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2. COMPOSITE SYSTEMS

As was stated at the end of the preceding sec-
tion, we consider two physical systems I, II (which do
not necessarily have the meaning of the I, II above),
and their combination I + IT . In the classical mechan-
ical method of description, I would have X degrees of
freedom, and therefore the coordinates q1,-..,qk , in
place of which we shall use the one symbol q ; corre-
spondingly, let II have 1 degrees of freedom, and the
coordinates TiseeesPy which shall be denoted by =r .
Therefore, I + IT has k + 1 degrees of freedom and the
coordinates Qyseeerdys Pys---,Pp , Or, more briefly,

q, r . In quantum mechanics then, the wave functions of

I have the form ¢(q) , those of II the form &(r) and
those of I + IT the form &(q, r) . In the corresponding
Hilbert spaces ®+, wll, gl+II , the inher product is
defined by [ ¢(q)¥(q) dq , [ t(r)7(¥J dr and

Jf o(q, r)¥(q, r)dq dr respectively. The physical quan-
tities of I, II, I + II are correspondingly the (hyper-
maximal ) Hermitian operators A, A, and A 1in mI,‘mII
and w11l respectively. )

Bach physical quantity in I is naturally also
one In I + IT , and in fact its A 1is to be obtained from
its A in this way: to obtain A #(qg, r) consider r as
& constant and apply A to the q function (g, r) .209
This rule of transformation is correct in any case for the
coordinate and momentum operators Q1""7Qk ~-and.

P]""’Pk , 1.e., ’

b

h 2 h
ql:'~~:qk:§;1‘ga:-;°'-;—;i'3a£
(cf. I.2.), and it conforms with the principles 1., Hl. in

2991t can easily be shown that if A 1is Hermitian or
hypermaximal, A is also.

'~ fore be represented by matrices

We therefore postulate them generally. (This is
the customary procedure in guantum mechanics. )

' Tn the same way, each physical quantity in IT
is also one in I + IT , and its A gives i1ts A by the
same rule: A o(q, r) equals Ae¢(g, r) 1if in the latter
expression, q is taken as constant, and o(q, r) is

If ¢(q) (m=1,2,... ) 1is a complete ortho-
normal set In ﬁlI and gn(r) (n =1,2,... ) one in
% | then @mln(q, r) = ¢ (a)g (r) (m, n=1,2,... ) 1s

" clearly one in m;+II . The operators A, A, A can there-

), lag,,) » and
).211

e {lem'
{ mnlm'n'} respectively (m, n', n, n' = 1,2,...
We shall make frequent use of this. The matrix representa-
tion means that

{x

. 0o

Av(@) = 20 apen (@) Aeg(P) = 3 e ik (0)

mt=1-" nt=1
and
>}
Aty (q, T) = Ejv 0:mnhn'n'(I)m'n’(q’ r)
m',n'=1
i.e.,
21OFor I. this is clear, and for 1l. also, so long as

only polynomials are concerned. For general functions, it
can be inferred from the fact that the correspondence of a
resolution of the identity and a Hermitian operator is not
disturbed in our transition A —= A.

211 pgcause of the large number and. variety of indices, we

use this method of denoting the matrices, which differs
somewhat from the notation used thus far.

2. COMPOSITE SYSTEMS h23 -
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0

Ao (a)e (r) = 2

m'n'=1

amrllminl ‘pml (Q.)§n, (r)

In particular the correspondence A —> A means that

dop(@)ey(r) = (Aopaden(e) = 3 o e (e (r)
mr=1 .
i.e.,

1, for n=nt

= a
O’mnlm'n* mlm’snln' an]n' °

0, for n # n'

In an analogous fashion, the correspondence A—s A
implies that « mn|m = anln'amlm'

A statistical ensemble in I + IT 1s character-
ized by its statistical operator U or by its matrix
{v }m'n'] . This also determines the statistical proper-
ties of all quantities In I + II , and therefore the
properties of the quantities in I also. Consequently
there~also corresponds to it a statistical ensemble in I
alone. 1In fact, an observer who could perceive onty I,
and not II , would view the ensemble of systems I + IT
as one such of systems I . What is now the statistical
operator U or its matrix (umlm'} » which belongs to this
I ensemble? We determine it as follows: The I quantity
wilth the matrix (e mlm'] has the matrix mlm' nln'} as
an I+II quantity, and therefore, by reason of a calcula-
tion in I , it has the expectation value

o

Y e
mim® m*|m

m,m'=1

while the calculation in I + IT gives

2. COMPOSITE SYSTEMS kas
E: Dmnlm'n'am'[msn’ln = E: umnlm'n'cm']m
m,n,m*,n’'=1 m,m’,n=1
= E: zz Im'n “mm
m,m'=1 \ n=1

In order that both expressions be equal, we must have

“mlmr ~ 2 “mn|m'n
n=1
In the same way, our I + II ensemble, if only
IT is consi@gred and T 1is ignored, determines a II
ensemble, with a statistical operator U and matrix

{“nln'} . By analogy, we obtain

Ynint = E: mn jmnt *

We have thus established the rules of corre-
spondence for the statistical operators of I, II, I + II,
i.e., U, U, U. They proved to be essentially different
from those which control the correspondence between the
operators A, A, A of physical quantities.

It should be mentioned that our u, U, U corre-
spondence depends only apparently on the choice of the
complete orthonormal sets ¢m(q) and gn(q) . Indeed it
was derived from an invariant condition (which is satisfied
by this arrangement alone): Namely, from the requirement
of agreement between the expectation values of A and of
A, or of those of A and of A .

U expresses the statistics in I + IT , U and
U those statistics restricted to I or II respectively.
There now arises the question: do U, U determine U
uniquely or not? In general one will expect a negative
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answer because all "probability dependencies" which may
exist between the two systems disappear as the information
1s reduced to the sole knowledge of U and U, i.e.s, of
the separated systems I and II . But if one knows the
state of I precisely, as also that of II , "probability
questions" do not arise, and then I + IT , too, is pre-
cisely known. An exact mathematical discussion is, how-
ever, preferable to these qualltative considerations, and.
we shall proceed to this. '

The problem is, then: For two given definite

matrices [umlm'] and [“n]n’} , find a third definite
matrix [Dmnlm'n'] , such that
o0 o
ZS “mim'n = “m|mr ? *mnjmnt T Yn|n:
n=1 m=1

(From

o0 N
E: ﬂm[m =15 2: Ynin = ' 2
n=1 :

m=1

it then follows directly that

o0

2: °mnjmn = '
m,n=1

1.e., the correct normalization is obtained.) This prob-
lem is always solvable, for example, Dmnlm'n' = YnimUm|n
i1s always a solution (it can easily be seen that this
matrix is definite), but the question arises as to whether
this is the only solution.

We shall show that this is the case if and only
if at least one of the two matrices {umlm'}’ {unln'} is
a state. First we prove the necessity of this condition,
i.e., the existence of several solutions if both matrices
correspond to mixtures. In such a case (ef. TV.2.)

2. COMPOSITE SYSTEMS ’ 427
“mm'TGEM'+5%M"Wﬂm:=WMnV+WMW
also, differing

(lem" Wi |m definite and ann" Whln'
by more than a constant factor,

o0 -

. o0 ’ 0 co
22 Ymlm = E: Ymm = 23 Ynln = 23 oln =1
m=1 n=1 n=1

m=1

a, B, 7, 8> 0, a +B =1, v+ 8 =1 ).
We easily verify that each

+ ov + TW

Umnlm'n = I”’mlm'vnln' + pw'mlm'vnln' mlm‘wnln' mlm'wnln'

with

*t+0=¢a, p+T=8, x+p=19,0+7T=275 ’

T, p, G, T> 0

is a solution. Then =«, p, 0, T can be chosen in an in-
finite number of ways: Because of o + B = 7 + 3 only
three of the four equations are independent; therefore,
p=7-n, 0d=a-x, 1=(5-a)+ x, and in order that
all be > 0 , we must require o« - & = 7y -B<a<aqa vy,
which is the case for infinitely many = . Now different
%, p, 0, v lead to different Umnlm'n' ,» because the
lem"vnln"3"’wmlm"wnln' are linearly independent,

since the are such, as well as the v

Vmjm® “Ym|m: n|n'"
Wnln'

Next we prove the sufficiency, and here we may
assume that um]mi corresponds to a state (the other case
is disposed of in the same way). Then U = P[¢] and since
the complete orthonormal set ®15%5, ..+ -was arbltrary, we
can assume ¢, = ¢ . U= P[

0. ] has the matrix
1 .

1}

1, for m=m' = 1

0 , otherwise
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2. COMPOSITE SYSTEMS k2g
Therefore =1, for m=m' =1 it follows that, by multiplication of Vi|m and . vn‘ln'
0 ' with two reciprocal constant factors, we can obtain
Dmnlm'n '
n=1

[>+] 0
\% =1, v = 1
= 0 , otherwise Z wlm ng1 nin
In particular, for m # 1 ,
But then we see that Ymim' = Vmlme’ UYnjnt = Vn|no )

‘2. Either Vmlmr = Xp¥pr  OF Valn = inxn .
(Indeed U = P[“ means that

mn jmn =

Ma

n=1

oo

but since all Dmnlmn > 0 because of the definikeness of

v )
Ynnmn [Dmnlmn = (Ucbmn, ¢, )] , therefore in this case m; Im®m >
“mnjmn = © - That is, (ve ., ¢ )= o0, and hence, be- _

L. and therefore Ynimr = Yo m e and correspondingly for
gsuse of the definiteness of U, (U ®mn ‘pm'n') also -0 Ym|me by analogy the same is true with U = P[ ] -)
(cf. IT.5., THEOREM 19.), where m', n' are arbitrary. We shall call U and U the progectlons of U
That is, it follows from m # 1 that ®mnjmp = 0 and in T and II respectively.2!?
because of the Hermitien nature, this also follows from We now apply ourselves to the states of T + IT ,
m' 41 . For m=-mt - however, this gives = P['f’] - The corresponding wave functions o(q, r) can

© be expanded according to the complete orthonormal set
D1nlin' = Z umnlmnr = uhln' ¢II]l’l(q, l") = °m(C1)§n(I’)
m=1
Consequently, as was asserted, the solution “unjmn 18 o(q, r) = Z mn®m ()&, (T)

determined uniquely - m,n=1

We can thus s arize our result as follows: A We can therefore replace them by the coefficients fon
statistical ensemble in T + IT with the operator * (m, n=1,2,...) which are subject only to the condition
U = (v Jm'n'} is determined uniquely by the statistical that
ensembles determined by it in I and IT mdiv1dua11y, 0
with the respective operators U = (u mlm'} and U = Z lfmnlz - Ile| ]2
{u ln,] » 1f and only if the following two conditions are T m,n=1
satisfied: be finite

LS °mnfmtnt = ‘mim*Vn|nt (From

[~ )
= - 212me projections of a state of I + IT are in general
U= ) Omn . = D, mlmZ n="1>
m,n=1 m=1 n ' mixtures in I or II ; cf. above. This circumstance was
,N= = ;
1 discovered by Landau, %Z. Physik 45 (1927).




k30 VI. THE MEASURING PROCESS
We can define two operators F, F* by

Fo(q)

| f 8(q, r)w(q‘)dq
(F.)

Fe (r) f«><q, r)e(ryar .

These are linear, but have the peculiarity of being de-
fined in ﬂtI and MII respectively, and of taking on
values from ERII and nl respectively. Their relation
is that of adjoints, since obviously (Fe¢, t) = (e, F*g)

(the inner product on the left is to be formed in I apg

that on the right is to be formed in %+ ).
difference of ML apng wIl
we can apply the results of IT.11: then, since we are
dealing with integral operators, z(F) and Z(F*) are
equal to

Since the

Hl@(q, ) faadr = [1e1% = 1 (J1el| in wT*TIyy,
Consequently F, F are con-
tinuous, in fact are completely continuous operators, and
F*F as well as FF* are definite operators, 7Tr (F*F) =
S(F) =1, Tr (FF') = 2(F') = 1 :

If we again consider the difference between 821
and SIII then we see that F*F is defined and assumes_
values in mI , and FF* similarly in %II .

3ince F@m(q) comes out equal to

and are therefore finite.

Z fmngn(r) )
n=1

F has the matrix {fﬁn} [by use of the complete ortho-
normal sets ¢m(q) and Eh(r) respectively -- note that
the latter is a complete orthonormsl set along with

£, (r) 1, likewise F* has the matrix {fmn} (with the

same complete orthonormal systems). Therefore F*F, FF*

1s mathematically unimportant,
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ave the matrices
[+ o]
2: Ilrmnfm'n
n=1

. I
using the complete orthonormal set e (q) in %~ ) and

| 2: fﬁnfmn'
{n=1

(using the complete orthonormal set EHTFT in §RII ).
On the other hand, U = P[¢] has the matrix
mnimin (using the completeIorthonormal set '
ol r) = ¢ (a)e (r) in w71 ), so that its projec-
tions in I and II , U and U have the matrices

| Zrwee}
{ Zrwte]

respectively (with the complete orthonormal sets given
above)-213 Consequently

{f_ £ )

and

*
(u.) U= FF, U= FF
Note that the definitions (F.) and the equations
(U.) make no use of the ¢ ¢, -~ hence they are valid

independently of these.
The 6perators U, T are completely. continuous,
and by II.11. and IV.3., they can be written in the form

m}

2130he mathematical .discussion 1s based on a paper by
E. Schmidt, Math. Ann. 83 (1907).
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U = = n 7
2 Py 10 U > Vi [, 1
k-1 k=1

in which the ¥y form a complete orthonormal set in & 1 R

the M, oOne in % and all Wi, Wi > 0 . We now neglect
the terms in each of the two formulas with W = 0 or

wﬁ = 0 Trespectively, and number the remaining terms with

k =1,2,... . Then the ¥ and N again form ortho-
normal, but not necessarily complete sets; the sums

M"

k=1 k=1

appear in place of the two

pvj 8

N
[

where M', M" can be equal to = or finite. Also, all
Wk, wﬁ are now > 0 . :

Let us now consider a ¥y e U¥y = ﬁ*k and

*
Furthermore '

S %
(F‘l"k: F‘lfl) F F‘Ifk, ’4’1) = (ka) ‘l’l)

= wﬁ , for k=1

W&(Wk: Wl)
=0 , for k#1

, 2 !
therefore, in particular, Jlekll = w'k- The —-—-ka

. IT Vi
then form an orthonormal set in R and they are eigen-
functlons of U, with the same eigenvalues as the ¥y

for v (i.e., wﬁ ). That is, each eigenvalue of U is

2. COMPOSITE SYSTEMS k33

" also one of U with at least the same multiplicity.

Interchanging U, U shows that they have the same eigen-

~values with the same multiplicities. The Wy and wﬁ

therefore coincide except for their order. Hence M' =
M" = M , and by re-enumeration of the wﬂ we can obtain
W = Wy o= Wy - And if this occurs, then we can clearly
choose

1

V¥

g = Fiy

In general. Then

1 *
—F

V’-‘E

‘l *
Me = — F By = — yvy, = ¢ ‘
k Wy k Wy k k
Therefore

1 1 . 212
(v.) g = ——= P, ¥y = ——=TF g -

Vi Vi

Let us now extend the orthonormal set ¢1,¢2,..
to a complete w1{w2,..., W{:*é)"‘ and likewise
Mysfgsee B0 mismgse-e, UEFS PP (each of the two sets
W{»Wé;-4~ and q{,né,... can be empty, finite or in-
finite, and in addition each set independently of the other
set). We have observed before, that (F. ), (U.) make no
reference to the ®n’ &y - We may therefore use (V.), as
well as the above construction, and let them determine the

choice of the complete orthonormal sets ®1,0,,--- and
£4,855--- - BSpecifically we let these coincide with the
11’1:‘|f2:°": ‘”:\Ifé;' and 51;.1_]‘2:"-: E{);l.é:"' respec-
tively. Now let Wk correspond to ¢“k ;M to gvk
(k = 1,...,M) (u1;u2:- different from one another,
REACTERE likewise). Then

quk = ]/wk gvk,,

Fo

o 0 for m # HysMps e o
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Therefore

= Jﬁk , for m = s D= vk,'k = 1,2,.

0 , otherwise

]

or equivalently

M
o(a, v) = ) NCICOR
k=1

By suitable choice of the complete orthonormal
sets ¢m(q) and ¢ (r) we have thus established that each
column of the matrix {fmn}‘ contains at most one element
# 0 (that this is real and > 0 , namely Jﬁk > is un-
important for what follows). What is the physical meaning
of this mathematical statement?

Let A be an operator with the eigenfunctions
®15%5,++- and with only distinct eigenvalues, say
8,585,-+- ;3 likewise B with 51)§2:"' and b],ba,...

A corresponds to a physical quantity in I , B to one in
IT . They are therefore simultaneously measurable. It is
easily seen that the statement "A has the value- 8 and
B has the value bn" determines the state @mn(q, r) =
¢m(q)§n(r) > and that this has the probability.

(P e, o) = [(e, o )| = |f |2
[@mn] mr mn

Consequently, our statement means that A, B are simul-
taneously measurable, and that if one of them was measured
in @ , then the value of the other is determined by it
uniquely. (An a_ with all fmn = 0 cannot result, be-

m
cause 1its total probability

P ENE
n=1

cannot be o0 , if a, ig ever observed -- therefore for

in the state (g, r) .
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exactly one n, f # 0 ; likewise for b, .) That is,
there are several possible A values in the state o
(namely, those 8, for which

z:’fmnlg >0
n=1

i.e., for which there exists an n with f # 0 —=
usually all 8, are such), and an equal number of possible
B values (those b, for which

i.e., for which there exists an m with £ # 0 ),’but

® establishes a one-to-one correspondence between the
possible A values and the possible B values.

. If we call the possible m values TPRITPPR

and the corresponding possible n values VisVosere then

Cy # 0, for m = Py I = vy k f 1,2,+--

=0, otherwise

therefore (M finite or = )
M
ola, ©) = Q) oo, (@)g, (r)
k=1 k k

hence

|ck|2 » for m=m" = p,, k=1,2,...

0
Upym * = z?mfm'n
n=1

0 , otherwise
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Uy = E:T;nf;mz'.
m=1

0 , otherwise

and therefore

M M
U= D2 lol®Pry g, U= 2 logl®®
k=1 ' k=1 [gvk]

Hence, when ¢ is projected in I or II , it in general
becomes a mixture, while it is a state in T + IT only.
Indeed, it involves certain Information regarding I + IT
which cannot be made use of in I alone or in II alone
namely the one-to-one corréspondence of the A and B ,
values with each other.
‘ For each o we can therefore so choose A, B,
i.e., the ¢, and the gn > that our condition 1is satis-
fied; for grbitrary A, B, it may of course be violated
Each state ¢ then establishes a particular relation ‘
between I and IT > While the related quantities A, B
depend on ¢ . How far o determines them, i.e., th; ®
end the &, , 1s not difficult to answer. If a1l |o, |
Ere dlifzrent and # 0, then U, U (which are detefiined
y 0 etermine the respective ¢ i
IV.3.). The general discussion is T;fintopzizu:iZdéif.

Finally, let us mention the fact that for M # 1

ﬁeither U nor U is a state (because all Ickl2 >0 )
or M = 1 they both are: = \ | :
P uU=P =
( [¢H]], U P[gv ] Then
) = 1
q, r) c1¢u](q)§v (r) . We can sbsorb ¢, 1in o (q)
1 ! Hq

Therefore U, U are states if and only if e(g, r)
the form ¢(q)e(r) ,
P[@] and P

has
> and in that case they are equal to

[¢] TesSpectively.
On the basis of the above results; we note: If

2
= lol® s for n=mnt -y, k=10,
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I is in the state ¢(q) and II in the state ¢&(r) ,

then I + IT 1is in the state o(qg, r) = ¢(q)t(r) . If on
the other hand I + IT is in a state @(q, r) which 1s
not a product ¢(q)e(r) , then I and II are mixtures
and not states, but ¢ establishes a one-to-one correspond-
ence between the possible values of certain quantities in

I and in IT .

3. DISCUSSION OF THE MEASURING PROCESS

Before we complete the discussion of the measur-
ing process in the sense of the ideas developed in VI.1.
(with the aid of the formal tools developed in VI.2.), we
shall make use of the results of VI.2. to exclude a possi-
ble explanation often proposed for the statistical charac-
ter of the process 1. (V.1.). Thils rests on the following
idea: et I Dbe the observed system, II the observer.
If I is in a state U = P[¢] before the measurement,
while II on the other hand is in a mixture

then I + ITI 1is a uniquely determined mixture U , and in
fact, as we can easily calculate from VI.2.,

[+-]

= 2 WPre 10 %plas 1) = el@)e (r)
n=1 n

S

If now a measurement of a quantity A takes place in I ,
then this is to be regarded as an interaction of T and
IT . This is a process 2. (V.1.), with an energy operator
H. TIf it has the time duration t , then we obtain

2xi 2ni
—TtH —h—-tH
U' = e Ue
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from U , and in fact,

= 2 WP
n |- 2xi
n=1 [ = tH ]
*n

2l

- g tH

If now each

‘I’n(Q; r)

were of the form v (q)nn(r) , where the ¥, are the
eigenfunctions of A » and the 1, any flxed complete
orthonormal set, then this intervention would have the
character of a. measurement For it transforms each state
¢ of I into a mixture of the eigenfunctions y_  of A .
The statistical character therefore arises in thlg way:
Before the measurement I was in a (unique) state, but II
was a mixture -- and the mixture character of II has, in
the course of the 1nteractlon, associated itself with |
I +‘II » and in particular, it has made a mixture of the
projection in - I . That is, the result of the measurement
is indeterminate, because the state of the observer before
the measurement is not known exactly. It is conceivable
that such a mechanism might function, because the state of
information of the observer regarding his own state could
have absolute 11m1tatlons, by the laws of nature. These
limitations would be expressed in the values of the w
which are characteristic of the observer alone (and there—
fore independent of o)

At this point, the attempted explanation breaks
down. For quantum.mechanics requires that W, =

P ) =
( n ; ®) [ (o, ¢ )I , 1.e., o dependent on ¢ t

There might exist another decomposition

Z [<1>'
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(the @ﬁ(q, r) = wn(q)qn(r) are orthonormal) but this is
of no use either; because the w) are (except for order)
determined uniquely by U' (IV.3.), and are therefore

equal to the w, - 21k

Therefore, the non-causal nature of the process
1. is not produced by any incomplete knowledge of the state .
of the observer, and we shall therefore assume in all that
follows that this state is completely known.

Let us now apply ourselves again to the problem
formulated at the end of VI.1. I, II, ITI shall have the
meanings given there, and, for the quantum mechanical in-
vestigation of I, II , we shall use the notation of VI.2.,
while TIII remains outside of the calculations (cf. the
discussion of this in VI.1.). Let A be the quantity (in
I) actually to be measured, ¢1(q),q2(q),... its eigen-
functions. Let I be in the state ¢(q)

If I is the observed system, II + IIT the
observer, then we must apply the process 1., and we find
that the measurement transforms I from the state ¢ into
one of the states (n = 1,2,.. ) , the probabilities for
which are respectively [(o, o )] =1,2,...) . Now,
what is the method of descrlptlon 1f I+ II is the ob-
served system, and only III the observer?

In this case we must say that II 4is a measuring
instrument which shows on a scale the value of A (in I) :
the position of the pointer on this scale is a physical
quantity B (in II) which is actually observed by III
(if II is already within the body of the observer, we
have the corresponding physiological concepts in place of
the scale and pointer, e.g., retina and image on the retina,
etc.) Let A have the values a;,a,,... , B the values
b1,b2,... , and let the numbering be such that a is

associated with bn

211*This approach 1s capable of still more variants, which
must be rejected for similar reasons.
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Initially, 1 ig in the (unknown ) state
and II in the (known) state te(r)
in the state o(q, r) = o(q)e(r)

as 1t is performed by II on I) 1s, as in the earlier

example, carried out by an energy operator H (in T 4 II)

in the time t . This is the process 2.
the ¢ into :

e(q)
s therefore I+ IT is

‘The measurement, (so far

» Which transforms

2ni
i tH
o' = o [ J.

Viewed by the Observer IIT )

1f the following is the cases

(by pro?ess 1.) the simultaneously measurable quantities
A, B (in I op IT respectiv

ely, or both in T 4 I1)
then the pai ] ]
Palr of values a., bn would have the Probability

0 for m# n, ang the probability v =
is, it suffices "to look at" IT ,y;ndn A#O;s ze;szf.d fhat
I . Quantum mechanics then requires in addition ) ’
v = 1(e, 6 )12 .

If this ig established,
Drocess so far ag it occurs in IT , is "explained® th
?etically, i.e., the division of I IT+ 111 disc e
In VI.1. is shifted to I + IT | IIT .. e

The mathematical Problem i :
8 then the r
A complete orthonormal set 4150 oy

one has g measurement only
If IIT were to measure

then the measuring

227+ 1s given in T .
3 .
Rgch a set §1,§2,... 1n.,mII as well as g state é in
» also an (energy) operator H in g l*tI > and a t , agpe

to be found so that the following holds. If ¢ is
arbitrary state in RI and ) 4 -

o(q, r) = *(a)e(r), or(q, p) - e o(q, r)

then ¢'(q, r) must have the form

2 Chonlale, (r)
n=1

3. DISCUSSION OF THE MEASURING PROCESS bl

(the c, are naturally dependent on ¢ ). Therefore

leg1? = 1(e, ¢.)12 . (That the latter is equivalent to
the physical requirement formulated above was discussed in
VI.2.)

In the following we shall use a fixed set
£,585,--- and a fixed ¢ along with the fixed LEPL PO
and shall investigate the unitary operator

2xi
Ao 5= tH
instead of =H .

The mathematical problem leads us back to the
problem solved in VI.2.: there the quantity corresponding
to our present ¢ was given, and we showed the existence
of Ch’ ¢n’ gn . Now Lo £, are fixed and o, c, are
given dependent on ¢ , and it remains so to determine a
fixed A that for @' = A® these Cps °n’ En, result.

We shall show that such a determination of A
is indeed possible. In this case only the principle is of
importance to us, i.e., the existence of any such A,

The further question, whether the

2xi .
A- o - tH
corresponding to simple and plausible measuring arrange-
ments also have this property, shall not concern us. In-~
deed, we saw that our requirements coincide with a plausible
intuitive criterion of the measurement character in an _
intervention. PFurthermore the arrangements in question are
to possess the characteristics of the measurement. Hence
quantum mechanics, as applied to observation would be in
blatant contradiction with experience, 1if these A did
not satlsfy the requirements in quéstion (at least approx-
imately).212 Therefore, in the following, only an abstract

215The corresponding calculation for the case of the posi- -
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A which satisfies our conditions eéxactly, shall be given
Therefore, let the ¢ (m=o0, +1, + 2 )
the & (n = o r 7 v o tven
n (0 s b1, +2,000) respectively be two given
complete orthonormal sets in %I and SRII i’espectively
(We do not 1et W, . run over 1,2,... , but over

?, 1, +2,.. This is burely for technical donven—
lence, and is in principle equivalent
the state ¢ be, for simplicity, £

operator A by °

to the former). Tet
We define the

o]

a ) X (e (r) = ) X O (Q) €

(r)
- m+n ?
m, N=-w m, N=-co

since the ¢m(q)§n(r) as well as the ¢m(q)§

a complete orthonormal set in §RI+II

m+n(r) form

> this A is unitary.

Now
2@ = 37 (e, 0)e0 (q), e(r) - to(r)
m=—co
therefore
°(a, r) = ¢(q)t(r) = > (o, )0 (ale (x)
Mm=—co
L) = s0la, v) = (e, ) (s (o)

M= —oo s

Hence our Durpose is accomplished.
c, = (o, ¢n) .

v A better overall view of the mechanism of this
brocess can be obtained if we exem

“ P1ify it by concrete
Schrddinger wave functions, and give m in place of A

The observed object, as well as the observer

We have in addition

tlon measurement discussed in ITTI.%. is ¢

- ontained in a
paper by Weizsécker, 7. Physik 70 (19371).
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(i.e., I and II respectively) may be characterized by
a single variable q and r respectively, running con-
tinuously from - = to + « . That is, let both be
thought of as points which can move along a line. Their
wave functions then have always the form v(q) and n(r)
respectively. We assume that thelr masses m, and m,
are so large that the kinetic energy portion of the energy
operator (i.e., E%T (E%I'g%)g + E%;'(E%I'Bf)g ) can be
neglected. Then there remains of H only the interaction
energy part which 1s decisive for the measurement. For
this we choose the particular form E%I q 357 -

The Schrodinger time dependent differential
equation then is (for the I + II wave functions

w’t = \lft(Cl: I’) ):

d b g2
ZeT 58 Vel® T) = - gy 4 55 vl P

(§E+ qgf)"l’t(q,v r) =0,

¥ela, v) = flg, r - tq) -

If, for t =0, ¥ (a, r) = o(q, r) , then we have
f(q, r) = o(g, r) , and therefore

\!’t(q: r) = o(q, r - tq)

In particular, if the initial states of I, II are repre-
sented by ¢(q) and &(r) respectively, then, in the
sense of our calculation scheme (if the time t appearing
therein is chosen to be 1)

o(q, r) = o(a)s(r) ,

e'(q, r) = ¥,(q, r) = e(a)e(r - q)
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We now wish to show that this can be used by IT for a
Pposition measurement of T > 1.e., that the coordinates
are tled to each other. (Since 9, * have continuous
épectra, they are therefore measurable with only arbitrary

Precision, but not with absolute Precision. Hence this can

be accomplished only,approximately.)

For this purpose, we wish to assume that t(r) -
is different from o only in a very small interval
- €< r<e (i.e., the coordinate r of the Oobserver
before the measurement is very accurately known), in addi-
tion ¢ should of' course be normalized:

[lel] =1, 1.e., J le(r)[%ar = 1

The probability therefore that g 1lies in the

interval d, - 8 < qg< 95 + 8 , and r in the interval
'y =8'<rc< Ty + 8" ig

qo+5 ro+8 qo+5'ro+6
f J lo'(q, r)|%aqar =f J‘ [#(a)I®le(r - q))2aqar .
q,-8 r,-8 Q-8 r,-d

Ir Q> Ty are.to differ by more than s + 8" + ¢ , then

this is o > 1.e., g, r are so very closely tied to each
other that the difference can never be greater than

5 +8' + e . And for To = 9y this is, equal to

qo+5
f le(q)|%aq ’
qo—6
if we choose & > 8% + € , because of the assumptions on
€ . But since we can choose 3, 51, ¢ arbitrarily small

(they must be different from zero, however), this means
that q, r are tled to each other with arbitrary close-
ness, and the Dbrobability density has the value furnished
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by quantum mechanics, |¢(q)|2 .

That is, the relations of the measurement, as we
had discussed them in IV.1., and in this section, are
realized.

The discussion of more complicated examples, say
of an analog to our four-term example of IV.1., or the
control determination of the validity of a measurement
wvhich II carried out on I ; effected by a second ob-
server III , can also be carried out in this fashion. It

1s left to the reader.






